import pandas as pd
import matplotlib.pyplot as pltf = "../data/002_processed/esolmet_2018.parquet"
tmx = pd.read_parquet(f)
tmx.info()<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 51173 entries, 2018-01-01 00:00:00 to 2018-12-31 23:50:00
Data columns (total 8 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 Ib 51173 non-null float64
1 Ig 51173 non-null float64
2 Id 51173 non-null float64
3 uv 51173 non-null float64
4 To 51173 non-null float64
5 hr 51173 non-null float64
6 ws 51173 non-null float64
7 p 51173 non-null float64
dtypes: float64(8)
memory usage: 3.5 MB
tmx| Ib | Ig | Id | uv | To | hr | ws | p | |
|---|---|---|---|---|---|---|---|---|
| Fecha | ||||||||
| 2018-01-01 00:00:00 | 0.057 | 0.0 | 0.0 | 0.001 | 18.93 | 41.57 | 1.253 | 879.0692 |
| 2018-01-01 00:10:00 | 0.002 | 0.0 | 0.0 | 0.001 | 18.76 | 41.00 | 0.418 | 879.4363 |
| 2018-01-01 00:20:00 | 0.170 | 0.0 | 0.0 | 0.001 | 18.92 | 40.96 | 0.955 | 879.5181 |
| 2018-01-01 00:30:00 | 0.371 | 0.0 | 0.0 | 0.001 | 18.52 | 42.46 | 1.823 | 879.5826 |
| 2018-01-01 00:40:00 | 0.305 | 0.0 | 0.0 | 0.001 | 18.49 | 42.43 | 2.149 | 879.6826 |
| ... | ... | ... | ... | ... | ... | ... | ... | ... |
| 2018-12-31 23:10:00 | 0.125 | 0.0 | 0.0 | 0.000 | 18.88 | 59.60 | 2.145 | 875.5595 |
| 2018-12-31 23:20:00 | 0.000 | 0.0 | 0.0 | 0.000 | 18.71 | 59.67 | 1.638 | 875.5595 |
| 2018-12-31 23:30:00 | 0.044 | 0.0 | 0.0 | 0.000 | 18.52 | 58.75 | 1.923 | 875.2889 |
| 2018-12-31 23:40:00 | 0.170 | 0.0 | 0.0 | 0.000 | 18.36 | 60.62 | 2.089 | 875.0606 |
| 2018-12-31 23:50:00 | 0.003 | 0.0 | 0.0 | 0.000 | 17.99 | 60.76 | 0.744 | 875.1424 |
51173 rows × 8 columns
def clasifica_temperatura(To):
if To >= 27:
return 3
elif To>=25:
return 2
elif To>=22:
return 1
elif To>=20:
return 0
elif To>=18:
return -1
elif To>=15:
return -2
else:
return -3
clasifica_temperatura(13.5)-3
tmx["alto_bajo"] = tmx.To.apply(lambda Temp: "3" if Temp>=27 else "2")tmx["alto_bajo"] = tmx.To.apply(clasifica_temperatura)resultado = tmx.alto_bajo.value_counts()resultadoalto_bajo
3 11714
1 9822
-1 8333
0 6916
2 6701
-2 5638
-3 2049
Name: count, dtype: int64
resultado.sort_index(inplace=True)resultadoalto_bajo
-3 2049
-2 5638
-1 8333
0 6916
1 9822
2 6701
3 11714
Name: count, dtype: int64
fig, ax = plt.subplots(figsize=(6,3))
ax.barh(resultado.index,resultado)
ax.grid(alpha=0.2)
ax.set_xlabel("Ocurrencia")
ax.set_ylabel("Nivel calor ")
ax.set_title("Temixco, 2018")Text(0.5, 1.0, 'Temixco, 2018')
