33  Une dos archivos en un dataframe, esolmet y ruoa

import pandas as pd
import matplotlib.pyplot as plt
from tools.importaciones import importa_excel
import glob as glob
import missingno as msno
f = "../data/001_raw/2018-2019-VIENTO-TMIX-RUOA.txt"
ruoa = pd.read_csv(f,
                   usecols=["TIMESTAMP","WSpeed_Avg","WDir_Avg"],
                   # usecols=["WDir_Avg","WSpeed_Avg"],
                   # usecols=[0,4,5],
                   skiprows=[0,2,3],
                   encoding="ANSI",
                   delimiter="\t",
                   index_col=0,
                   parse_dates=True,
                   dayfirst=True,
                  )
ruoa = ruoa.resample("10Min").mean()
ruoa = ruoa[ruoa.index.year == 2018]
ruoa.index.duplicated()
array([False, False, False, ..., False, False, False], shape=(52560,))
ruoa[ruoa.index.duplicated()]
WSpeed_Avg WDir_Avg
TIMESTAMP
files = glob.glob("../data/001_raw/*.xls")

esolmet = pd.concat([importa_excel(file) for file in files])
esolmet = esolmet[esolmet.index.year == 2018]
del  esolmet["Viento Vel."]
esolmet = esolmet.resample("10Min").mean()
esolmet.loc["2018-02-01"]
Directa Global Difusa UV Temperatura Humedad Presiòn Bar.
Fecha
2018-02-01 00:00:00 0.003 0.0 0.0 0.001 15.38 53.71 878.2341
2018-02-01 00:10:00 0.313 0.0 0.0 0.001 15.71 50.03 878.1605
2018-02-01 00:20:00 0.029 0.0 0.0 0.001 15.57 51.52 877.9796
2018-02-01 00:30:00 0.013 0.0 0.0 0.001 15.23 52.00 877.9725
2018-02-01 00:40:00 0.001 0.0 0.0 0.001 15.28 51.80 878.0463
... ... ... ... ... ... ... ...
2018-02-01 23:10:00 0.113 0.0 0.0 0.001 19.11 41.47 878.6667
2018-02-01 23:20:00 0.248 0.0 0.0 0.001 19.57 41.13 878.7175
2018-02-01 23:30:00 0.034 0.0 0.0 0.001 19.59 41.47 878.7158
2018-02-01 23:40:00 0.033 0.0 0.0 0.001 19.38 41.95 878.7092
2018-02-01 23:50:00 0.100 0.0 0.0 0.001 19.42 41.27 878.9540

144 rows × 7 columns

esolmet[esolmet.index.duplicated()].index
DatetimeIndex([], dtype='datetime64[ns]', name='Fecha', freq='10min')
data = pd.concat([ruoa,esolmet],axis=1)
data
WSpeed_Avg WDir_Avg Directa Global Difusa UV Temperatura Humedad Presiòn Bar.
2018-01-01 00:00:00 1.1817 300.1500 0.057 0.0 0.0 0.001 18.93 41.57 879.0692
2018-01-01 00:10:00 1.2568 306.2400 0.002 0.0 0.0 0.001 18.76 41.00 879.4363
2018-01-01 00:20:00 1.6964 348.8100 0.170 0.0 0.0 0.001 18.92 40.96 879.5181
2018-01-01 00:30:00 2.2944 348.3400 0.371 0.0 0.0 0.001 18.52 42.46 879.5826
2018-01-01 00:40:00 1.6643 210.8732 0.305 0.0 0.0 0.001 18.49 42.43 879.6826
... ... ... ... ... ... ... ... ... ...
2018-12-31 23:10:00 1.5977 331.0400 0.125 0.0 0.0 0.000 18.88 59.60 875.5595
2018-12-31 23:20:00 2.3029 323.7000 0.000 0.0 0.0 0.000 18.71 59.67 875.5595
2018-12-31 23:30:00 2.0789 186.7430 0.044 0.0 0.0 0.000 18.52 58.75 875.2889
2018-12-31 23:40:00 0.8253 80.1400 0.170 0.0 0.0 0.000 18.36 60.62 875.0606
2018-12-31 23:50:00 1.0315 276.9384 0.003 0.0 0.0 0.000 17.99 60.76 875.1424

52560 rows × 9 columns

data.to_csv("../data/002_processed/esolmet_ruoaWSWD_2018.parquet")
msno.matrix(data)